树脂基复合材料成形工艺进展(五)
<p> 由于该技术还存在以上缺点,因此未来发展是降低工装成本、提高结构件性能、减少废品率。因此,在该技术基础上又开发了真空辅助树脂注塑成形(VARI)技术,辅助树脂被织物吸收,不仅可降低孔隙率,预成形纤维更紧密,真空形成的负压,树脂就顺真空通路沿预成形体各层面流动,从而充分浸渍纤维,并使纤维/树脂分布均匀。其中提高性能,主要是为了采用RTM制造高强度主要结构件,为此,美国国防预研局开发了Z向纤维增强RTM技术,该技术可在织物横向或增强蒙皮界面处采用不连续纤维增强。这种新型制造理论可不通过编织或缝合实现三维结构。该技术在应用过程中有几项关键技术要解决:充填过程模拟技术、热传递和固化反应研究、注射方法研究、RTM设备研究。</p><p> (2)树脂浸渍技术。</p>
<p> RFI工艺是一种树脂膜熔渗和纤维预制体相结合的一种树脂浸渍技术。其成形过程是将树脂制备成树脂膜或稠状树脂块,安放于模具的底部,其上层覆以缝合或三维编织等方法制成的纤维预制体。然后依据真空成形工艺的要点将模腔封装,于热环境下采用真空技术将树脂由下向上抽吸。树脂膜受热后黏度降低,沿着预制体由下向上爬升,从而填满整个预制体空间,随即依照固化工艺,制成复合材料制件。该技术由于只采用传统的真空袋压成形方法,免去了RTM工艺所需的树脂计量注射设备及双面模具的加工,在制造出优异的制品的同时大大降低了制品的成本。目前在航空领域主要应用于飞机雷达天线罩。但是该工艺虽然不采用热压罐固化零件,但还需要真空袋系统进行固化,而且工艺温度要求高,所以要求核心材料和工装能够承受高温。该技术包括的关键工艺技术包括:预形件成形(三维编织及缝合等技术)、树脂流动模拟及控制、编织及缝合设备研究。</p>
<p> (3)纤维缠绕。</p>
<p> 该工艺主要用于空心、圆形及椭圆零件,如管路及油箱。纤维束通过一个树脂池后以各种方向和速度缠绕到芯轴上,方向和速度由纤维进给机控制。这是一项已经发展较为成熟的技术,无论是在自动化、速度、变厚度、质量和纤维方向上都得到了巨大改进。它是筒形件的低成本快速制造方法。目前三维编织主要是成本高、自动化程度低;未来可能用于昂贵的钛合金接头和发动机叶片等,而且在成本上有所减少。</p>
<p> (4)拉挤。</p>
<p> 拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)等。拉挤成型是复合材料成型工艺中的一种特殊工艺,其优点是:</p>
<p> ·生产过程完全实现自动化控制,生产效率高;·拉挤成型制品中纤维含量可高达80%,浸胶在张力下进行,能充分发挥增强材料的作用,产品强度高;·制品纵、横向强度可任意调整,可以满足不同力学性能制品的使用要求;·生产过程中无边角废料,产品不需后加工,故较其它工艺省工,省原料,省能耗;·制品质量稳定,重复性好,长度可任意切断。拉挤成型工艺的缺点是产品形状单调,只能生产线形型材,而且横向强度不高。</p>
<p> 挤成型工艺过程是由送纱、浸胶、预成型、固化定型、牵引、切断等工序组成。无捻粗纱从纱架引出后,经过排纱器进入浸胶槽浸透树脂胶液,然后进入预成型模,将多余树脂和气泡排出,再进入成型模凝胶、固化。固化后的制品由牵引机连续不断地从模具拔出,最后由切断机定长切断。在成型过程中,每道工序都可以有不同方法:如送纱工序,可以增加连续纤维毡,环向缠绕纱或用三向织物以提高制品横向强度;牵引工序可以是履带式牵引机,也可以用机械手;固化方式可以是模内固化,也可以用加热炉固化;加热方式可以是高频电加热,也可以用熔融金属(低熔点金属)等。
</p>
页:
[1]