合金及合金的结构
合金是一种金属元素和一种或几种其它元素(金属或者非金属均可)熔合后而组成的具有进速特性的物质。组成合金最基本的、能独立存在的物质称为组元,简称元。绝大多数情况下,组元即是构成合金的元素。但也有将化合物作为组元的,其条件是化合物在所研究的范围内,既不分解也不发生任何化学反应。根据组元的数量,可分为二元合金、三元合金或多元合金、如简单黄铜是由铜和锌两种元素组成的二元合金;硬铝是由铝、铜、镁三种元素组成的三元合金。 <BR> ◆ 铜合金分类 <BR> 铜合金分为黄铜、青铜和白铜。白铜是铜镍合金,主要用来制造精密机械、精密仪表中的耐蚀零件及电阻器、热电偶等。 <BR> 机械制作中,主要使用的是黄铜和青铜。 <BR> ● 铸造黄铜 <BR> 铜和锌著称的合金统称为黄铜。其中铜锌二元合金称普通黄铜。除锌外再加入其它元素所组成的多元黄铜称为特殊黄铜。 <BR> 铸造黄铜具有较高的力学性能,铸造性能较好,且价格比青铜低。常用于一般用途的轴承、衬套、齿轮等耐磨件和阀门等耐蚀件。 <BR> ● 铸造青铜 <BR> 可分为普通青铜(锡青铜)和特殊青铜(铝青铜、铅青铜、硅青铜、铍青铜等)两大类。 <BR> ◆ 铜合金铸造工艺 <BR> 各种成分的铜合金的结晶特征不同,铸造性能不同,铸造工艺特点也不同。 <BR> 1、锡青铜:结晶特征是结晶温度范围大,凝固区域宽。铸造性能方面流动性差,易产生缩松,不易氧化。工艺特点是壁厚件采取定向凝固(顺序凝固),复杂薄壁件、一般壁厚件采取同时凝固。 <BR> 2、铝青铜和铝黄铜:结晶特征是结晶温度范围小,为逐层凝固特征。铸造性能方面流动性较好,易形成集中缩孔,极易氧化。工艺特点是铝青铜浇注系统为底注式,铝黄铜浇注系统为敞开式。 <BR> 3、硅黄铜:结晶特征是介于锡青铜和铝青铜之间。铸造性能最好(在特殊黄铜中)。工艺特点是顺序凝固工艺,中注式浇注系统,暗冒口尺寸较小。 <BR> ◆ 铝合金铸件分类 <BR> 铸造铝合金按化学成分可分为铝硅合金、铝铜合金、铝镁合金和铝锌合金等。 <BR> ● 铝合金的铸造工艺 <BR> 铝合金的铸造性能和化学成分密切相关,其中Al-Si合金处于共晶成分附近,铸造性能最好,和灰铸铁相似。Al-Cu合金远离共晶成分,凝固温度范围大,铸造性能最差。在实际生产中,铝铸件都有冒口补缩,Al-Si类合金的凝固温度范围小,冒口补缩效率高,易获得组织致密的铸件。其它类铸铝合金的凝固温度范围大,冒口补缩效率低,铸件致密性差。 <BR> 铝合金极易吸气和氧化,因此浇注系统必须保证铝液较快而平稳地流入,避免搅动。 <BR> 各种铸造方法都适用于铝合金铸件。当生产量较少时,可用砂型铸造,应选用细砂来造型;大量生产的重要铸件,则采用特种铸造。金属型铸造效率高,铸件质量好。低压铸造适用于要求致密性高的耐水压铸件。压力铸造可用于薄壁复杂小件。 <BR> ● 铸造铝合金的熔炼特点 <BR> 铝合金在液态下极易氧化,其产物为Al2O3,熔点高达2050℃,密度稍大于铝,呈固态夹杂物悬浮在铝液中,很难去除,既恶化铸造性能,又降低力学性能,使铸件致密性降低。铝液还极易吸收氢气,凝固时析出,形成气孔或针孔等缺陷。 <BR> 1、精炼方法 为了减缓铝液的氧化和吸气,铝合金应在熔剂层覆盖下熔炼。可向坩锅内加入KCl、NaCl等作为熔剂,以便将铝液与炉气隔离。为驱除铝液中已吸入地氢气,防止针孔的产生,在铝液出炉之前应进行驱氢精炼。方法有多种,较为简便的是用钟罩向铝液中压入氯化锌(ZnCl2)或六氯乙烷(C2Cl6)等氯盐或氯化物,于是发生如下反应: <BR> 3ZnCl2 + 2Al = 3Zn + 2AlCl3 <BR> 3C2Cl6 + 2Al = 3C2Cl4 + 2AlCl3 <BR> 反应生成的AlCl3沸点为183℃,C2Cl4的沸点为121℃,故形成气泡,在上浮过程中将铝液中的气体H2及Al2O3夹杂一起带出液面。 <BR> 2、熔炼设备 铝合金熔炉种类很多,一般多用焦碳坩锅炉。也可用电阻坩锅炉。此外感应电炉(工频、中频)也有使用。 <BR> 合金的结构要比纯金属复杂得多。因为合金由两种或多种元素组成,各元素间的相互作用,会形成各种不同的相。我们把在金属和合金中,凡化学成分相同、结构相同并与其他部分由界面分开的均匀组成部分,称之为相。 <BR> 下面按照这一概念来分析纯金属和合金的结构。纯金属液态时为单相;固态由同一元素、同一晶格构成,故为单相;结晶过程中,既有液相又有固相,即为二相。合金在液态时,其为具有一定化学成分均匀一致的合金液体,为单相。合金由液态转变为固态后,各元素彼此相互溶解可形成固溶体;元素也可能彼此间发生反应而形成金属化合物。固溶体和金属化合物是固态合金的两个基本相。所以合金在固态时,可能是单相组织也可能是多相组织。在分析合金结构时,就是分析其相结构,看其由几种固溶体或金属化合物,即为几相. <BR> ◆ 固溶体 <BR> 所谓固溶体是指溶质原子溶入金属溶剂的晶格中所组成的合金相。两组元在液态下互溶,固态也相互溶解,且形成均匀一致的物质。形成固溶体时,含量大者为溶剂,含量少者为溶质;溶剂的晶格即为固溶体的晶格。 <BR> ● 固溶体的分类 <BR> 按溶质原子在晶格中的位置不同可分为置换固溶体和间隙固溶体。 <BR> 1、置换固溶体 溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体。当溶剂和溶质原子直径相差不大,一般在15%以内时,易于形成置换固溶体。铜镍二元合金即形成置换固溶体,镍原子可在铜晶格的任意位置替代铜原子。 <BR> 2、间隙固溶体 溶质原子分布于溶剂晶格间隙而形成的固溶体称间隙固溶体。间隙固溶体的溶剂是直径较大的过渡族金属,而溶质是直径很小的碳、氢等非金属元素。其形成条件是溶质原子与溶剂原子直径之比必须小于0.59。如铁碳合金中,铁和碳所形成的固溶体――铁素体和奥氏体,皆为间隙固溶体。 <BR> 另外,按溶质元素在固溶体中的溶解度,可分为有限固溶体和无限固溶体。但只有置换固溶体有可能成为无限固溶体。 <BR> ● 固溶体的性能 <BR> 当溶质元素含量很少时,固溶体性能与溶剂金属性能基本相同。但随溶质元素含量的增多,会使金属的强度和硬度升高,这种现象称为固溶强化。置换固溶体和间隙固溶体都会产生固溶强化现象。 <BR> 适当控制溶质含量,可明显提高强度和硬度,同时仍能保证足够高的塑性和韧性,所以说固溶体一般具有较好的综合力学性能。因此要求有综合力学性能的结构材料,几乎都以固溶体作为基本相。这就是固溶强化成为一种重要强化方法,在工业生产中得以广泛应用的原因。 <BR> ◆ 金属化合物 <BR> 金属化合物是两组元相互作用形成的新相,它的晶体结构与两组元都不相同,并具有金属性质。金属化合物有多种,它们的共同特点是熔点高、硬度高,一般都作为合金中的硬化相。如碳钢中的Fe3C,合金钢中的TiC、VC、W2C等。 <BR> 合金中以单相的固溶体或金属化合物的形式存在的情况减少,大多以两相的机械混合物形式存在。如碳钢中的珠光体,就是由固溶体(铁素体)和金属化合物(渗碳体Fe3C)组成的机械混合物。
页:
[1]