HEATS 发表于 2010-10-23 18:26:23

高速切削技术

<TABLE cellSpacing=0 cellPadding=0 width="98%" border=0>
<TBODY>
<TR>
<TD width="100%">
<P><FONT color=#000000><STRONG>一、概述 <BR></STRONG><BR>自20世纪30年代德国 Carl Salomon博士首次提出高速切削概念以来,经过50年代的机理与可行性研究,70年代的工艺技术研究,80年代全面系统的高速切削技术研究,到90年代初,高速切削技术开始进入实用化,到90年代后期,商品化高速切削机床大量涌现,21世纪初,高速切削技术在工业发达国家得到普遍应用,正成为切削加工的主流技术。 <BR><BR>根据1992年国际生产工程研究会(CIRP)年会主题报告的定义,高速切削通常指切削速度超过传统切削速度5-10倍的切削加工。因此,根据加工材料的不同和加工方式的不同,高速切削的切削速度范围也不同。高速切削包括高速铣削、高速车削、高速钻孔与高速车铣等,但绝大部分应用是高速铣削。目前,加工铝合金已达到2000-7500m/min;铸铁为900-5000m/min;钢为600-3000m/min;耐热镍基合金达500m/min;钛合金达150-1000m/min;纤维增强塑料为2000-9000m/min。 <BR><BR>高速切削是一项系统技术,影响高速技术的各方面因素,企业必须根据产品的材料和结构特点,购置合适的高速切削机床,选择合适的切削刀具,采用最佳的切削工艺,以达到理想的高速加工效果。 <BR><BR><STRONG>二、高速切削的特点与应用</STRONG> <BR><BR>实践表明,高速切削具有以下加工特点: <BR><BR>切削力降低 <BR>工件热变形减少 <BR>有利于保证零件的尺寸、形位精度 <BR>已加工表面质量高 <BR>工艺系统振动减小 <BR>显著提高材料切除率 <BR>加工成本降低 <BR><BR>高速切削的上述特点,反映了在其适用领域内,能够满足效率、质量和成本越来越高的要求,同时,解决了三维曲面形状高效精密加工问题,并为硬材料和薄壁件加工提供了新的解决方案。 <BR><BR>高速切削在航空航天业、模具工业、电子行业、汽车工业等领域得到越来越广泛的应用。在航空航天业主要是解决零件大余量材料去除、薄壁件加工、高精度、难加工材料和加工效率等问题,特别是整体结构件高速切削,既保证了零件质量,又省去了许多装配工作;模具业中大部分模具均适用高速铣削技术,高速硬切削可加工硬度达50-60HRC的淬硬材料,因而取代了部分电火花加工,并减少了钳工修磨工序,缩短了模具加工周期;高速铣削石墨可获得高质量的电火花加工电极。高速切削的高效率使其在电子印刷线路板打孔和汽车大规模生产中得到广泛应用。目前,适合高速切削的工件材料有铝合金、钛合金、铜合金、不锈钢、淬硬钢、石墨和石英玻璃等。 <BR><BR><STRONG>三、高速切削机床</STRONG> <BR><BR>高速切削要获得良好的应用效果,必须将高性能的高速切削机床、与工件材料相适应的刀具和对于具体加工对象最佳的加工工艺技术相结合。高速切削机床是高速切削应用的基本条件。 <BR><BR>高速铣床的主轴转速一般在18,000rpm以上,30,000-60,000rpm也已在工业中实际应用,功率在十几至几十千瓦,高速状态下达到最大功率,但扭矩降到最小,同时许用的铣刀直径也将减小。高动态的进给驱动直线工作进给速度一般在20-40m/min,采用直线电机的驱动速度在60-120m/min,加速度1-2g。回转工作台速度可达360rmp,回转加速度达47°/s&sup2;,基本满足高速五坐标联动加工。 <BR><BR>机床主轴和床身要有良好的刚性,优良的吸振特性和隔热性能。人造大理石床身具有很高的热稳定性,良好的吸振性能,并能根据需要制作最合理的机床结构。研究表明人造大理石的吸振性是铸铁的6倍左右。</FONT></P>
<P align=center><STRONG><FONT color=#000000><IMG src="http://www.chmcw.com/upload/news/RCL/13220_ghtsxk20077511142.jpg"></FONT></STRONG></P>
<P align=center><STRONG><FONT color=#000000>图1 &nbsp;高速机床CNC控制技术</FONT></STRONG></P>
<P><FONT color=#000000>具有快速数据处理能力的CNC控制系统是高速机床的必要保证。图1显示了高速机床CNC控制系统的有关技术。前视技术、大容量内存和ETH-ERNET通讯等技术是高数据处理速度的基础,NURBS曲线插补为复杂曲面提供了短程序段和光滑插补解决方案,数字驱动克服了模拟控制微量的时间滞后问题,高分辨率反馈技术是高精度加工的保障。 <BR><BR>此外,机床的安全防护、刀库数量、换刀速度、冷却润滑、排屑能力等等,也是设计或选购高速机床必须考虑的重要问题。 <BR><BR></FONT><FONT color=#000000><STRONG>四、高速切削刀具技术 <BR></STRONG><BR>高速切削刀具不仅在耐用度和可靠性方面比常规加工有更高的要求,在刀具系统的安全性方面也有特殊的要求。 <BR><BR>从提高耐用度和可靠性角度,需要考虑: <BR><BR>刀具基体与涂层材料 <BR>刀尖几何结构 <BR>刀刃数和刀杆伸出量 <BR>切削用量 <BR>走刀方式 <BR>冷却条件 <BR>刀具与工件材料匹配 <BR><BR>从提高使用安全性方面,需要考虑: <BR><BR>刀具系统强度与尺寸 <BR>刀杆与机床的夹持方式 <BR>刀片夹紧方式 <BR>刀具动平衡 </FONT></P>
<P align=center><STRONG><FONT color=#000000><IMG src="http://www.chmcw.com/upload/news/RCL/13220_4f3qha200775111440.gif"></FONT></STRONG></P>
<P align=center><STRONG><FONT color=#000000>图2 &nbsp;刀具伸出量对耐用度的影响</FONT></STRONG></P>
<P align=left><FONT color=#000000>由于高速切削高转速和快进给等特点,除了良好的耐磨性和高的强度韧性的先进刀具材料,优良的刀具涂层技术,合理的几何结构参数和高同心度的刀刃精度质量等因素外,还需特别注意其它因素对刀具耐用度的影响。图2为不同刀具伸出量对切削路径长度的影响,可见伸出量越短,耐用度越高。一般情况下,顺铣的耐用度高于逆铣,而往复铣的耐用度最低(见图3)。图3中向下进实际反映刀具顶着进给方向进刀,而向上进反映刀具拖着进给方向进刀,对耐用度也有较大影响。铝合金高速铣削通常用双刃铣刀,过多的刀刃会减少容屑空间,容易引起切屑粘刀。为避开共振频率,也可采用三刃铣刀以增加冲击频率。铝合金加工容易产生积屑瘤,这对高速铣削非常有害。要减少积屑瘤的产生,刀具表面要平滑;避免采用物理气相沉积(PVD)涂层刀具,因为TiAlN涂层很易与铝产生化学反应,可以选用非涂层刀具,细晶金刚石涂层或类金刚石涂层刀具;如有可能,尽量采用油雾刀具内冷进行冷却润滑。</FONT></P>
<P align=center><STRONG><FONT color=#000000><IMG src="http://www.chmcw.com/upload/news/RCL/13220_zk0bqm200775111518.gif"></FONT></STRONG></P>
<P align=center><STRONG><FONT color=#000000>图3 &nbsp;球头铁刀不同铣削方式对耐用度的影响</FONT></STRONG></P>
<P><FONT color=#000000>高速铣削刀具结构对刀具耐用度和安全性均有很大影响,关键要点包括刀具系统的平衡设计;减少径向和轴向跳动;控制动平衡精度;与机床联接普遍采用HSK刀柄或类似双面接触短锥刀柄;刀具的夹紧最新趋势是采用冷缩式夹紧结构(或称热装式),装夹时利用感应或热风加热使刀杆孔膨胀,取出旧刀具,装入新刀具,然后采用风冷使刀具冷却到室温,利用刀杆孔与刀具外径的过盈配合夹紧,这种结构刀具的径向跳动在4&micro;m,刚性高,动平衡性好,夹紧力大,高转速下仍能保持高的夹紧可靠性,特别适用于更高转速的高速铣削加工。 <BR><BR></FONT><FONT color=#000000><STRONG>五、高速切削工艺技术 <BR></STRONG><BR>高速切削工艺主要包括:适合高速切削的加工走刀方式,专门的CAD/CAM编程策略,优化的高速加工参数,充分冷却润滑并具有环保特性的冷却方式等等。 <BR><BR>高速切削的加工方式原则上多采用分层环切加工。直接垂直向下进刀极易出现崩刃现象,不宜采用。斜线轨迹进刀方式的铣削力是逐渐加大的,因此对刀具和主轴的冲击比垂直下刀小,可明显减少下刀崩刃的现象。螺旋式轨迹进刀方式采用螺旋向下切入,最适合型腔高速加工的需要。 <BR><BR>CAD/CAM编程原则是尽可能保持恒定的刀具载荷,把进结速率变化降到最低,使程序处理速度最大化。主要方法有:尽可能减少程序块,提高程序处理速度;在程序段中可加人一些圆弧过渡段,尽可能减少速度的急剧变化;粗加工不是简单的去除材料,要注意保证本工序和后续工序加工余量均匀,尽可能减少铣削负荷的变化;多采用分层顺铣方式;切入和切出尽量采用连续的螺旋和圆弧轨迹进行切向进刀,以保证恒定的切削条件;充分利用数控系统提供的仿真验证的功能。零件在加工前必须经过仿真,验证①刀位数据的正确性,②刀具各部位是否与零件发生干涉,③刀具与夹具附件是否发生碰撞,确保产品质量和操作安全。 <BR><BR>高速铣削加工用量的确定主要考虑加工效率、加工表面质量、刀具磨损以及加工成本。不同刀具加工不同工件材料时,加工用量会有很大差异,目前尚无完整的加工数据。通常,随着切削速度的提高,加工效率提高,刀具磨损加剧,除较高的每齿进给量外,加工表面粗糙度随切削速度提高而降低。对于刀具寿命,每齿进给量和轴向切深均存在最佳值,而且最佳值的范围相对较窄。高速铣削参数一般的选择原则是高的切削速度、中等的每齿进给量fz、较小的轴向切深ap和适当大的径向切深ae。 <BR><BR>在高速铣削时由于金属去除率和切削热的增加,冷削介质必须具备将切屑快速冲离工件、降低切削热和增加切削界面润滑的能力。常规的冷却液及加注方式很难进入加工区域,反而会加大铣刀刃在切入切出过程的温度变化,产生热疲劳,降低刀具寿命和可靠性。现代刀具材料,如硬质合金、涂层刀具、陶瓷和金属陶瓷、CBN等具有较高的红硬性,如果不能解决热疲劳问题,可不使用冷却液。 <BR><BR>微量油雾冷却一方面可以减小刀具-切屑-工件之间的摩擦,另一方面细小的油雾粒子在接触到刀具表面时快速气化的换热效果较冷却液热传导的换热效果方式能带走更多的热量,目前已成为高速切削首选的冷却介质。 <BR><BR>氮气油雾冷却介质在钛合金的高速铣削中取得了很好的效果。氮气油雾冷却介质除具有空气油雾的冷却润滑作用外,还具有抗氧化磨损等作用,在33m/min的铣削速度时,相比较空气油雾冷却,刀具耐用度提高60%,铣削力可降低20%-30%。 <BR><BR></FONT><FONT color=#000000><STRONG>六、结语 <BR></STRONG><BR>高速切削是一项先进的、正在发展的综合技术,必须将高性能的高速切削机床、与工件材料相适应的刀具和对于具体加工对象最佳的加工工艺技术相结合,充分发挥高速切削技术的优势。高速切削工具技术也是一项关键技术,为了适应和推动我国高速切削技术的发展,我们应该充分认识到,工具制造是一个高技术含量的行业,应加强该领域的基础研究、工程研究和应用研究;迅速发展的高速切削技术极大的刺激高性能刀具的需求,我国工具行业应重点在刀具的耐磨性、精度和可靠性方面加强研发力度,提高刀具的竞争能力;刀具的竞争力应集中在高性能带来的整体经济效益,在应用领域推广使用高性能刀具;提供个性化技术服务;根据我国目前的实际情况,建议重点发展涂层技术(如耐磨(硬、软)涂层、复合涂层、纳米结构涂层等),刀具质量保障技术和刀具数据库。</FONT></P></TD></TR></TBODY></TABLE>
               
页: [1]
查看完整版本: 高速切削技术

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网