zjazym 发表于 2011-6-18 09:25:12

凸轮传动系统的摩擦学设计

1 前言
凸轮传动系统主要用于机械控制系统,实现运动形式的转化和运动方式的控制。在轻工、纺织、食品等行业应用广泛,与其它机构的组合设计实现复杂的运动规律。凸轮传动系统的设计是以运动设计为主体,以实现精确控制的目的。但凸轮的摩擦、磨损影响运动精度和控制质量,是凸轮传动系统失效的主要原因。目前对凸轮传动系统的研究集中在对摩擦学特性的研究,特别是内燃机的配气系统。摩擦学特性研究是在运动特性研究的基础上进行的。由于凸轮传动系统工作状态的特殊性,从动件在工作过程中的变速运动,产生惯性冲击,在分析凸轮传动系统的载荷时要考虑这一作用。凸轮传动系统在每一轮廓点上的受力是不均匀的,所以造成不均匀的磨损。由于每一点的廓线曲率不同,能产生的油膜厚度也是变化的,因此增加分析的难度。本文分析总结凸轮传动系统设计的基本方法,提出目前设计要考虑的内容,以供设计者参考。
2 凸轮设计基础
凸轮廓线设计
凸轮机构的设计主要包括基本尺寸的确定和凸轮轮廓的设计。基本尺寸主要是根据压力角等因素来确定,凸轮轮廓是根据基本尺寸和从动件的运动规律设计的。过去这两部分的设计常常采用图解法,虽然图解法简单、直观,但精度低,随着计算机技术的发展和数控机床的普及,凸轮机构设计的解析法正逐步取代传统的图解法。
凸轮设计的关键是凸轮的轮廓曲线,关系到运动的控制、运动的失真和摩擦学特性。廓线设计的关键是从动件运动规律的确定,运动规律影响凸轮传动系统的运动学和动力学特性,也即影响运动质量。因此,凸轮传动系统设计主要包含从动件运动规律和基本尺寸的确定(基圆半径、偏置、摆动中心等),决定了轮廓曲线的形状。
凸轮传动系统特性分析
凸轮机构设计的目的就是使工作端再现预期的运动规律。当凸轮机构低速运转或其刚度很大而质量较小时,其工作端的运动规律基本上受所设计的凸轮廓线控制。然而,当凸轮机构高速运转或系统固有频率较低时,工作端的运动规律将发生畸变,产生不容忽视的动态偏差,影响机构的实施性能。
对于弹性凸轮机构而言,抑制其动态响应的相关文献报道较之弹性连杆机构要少得多。Grewal等比较了不同凸轮廓线下高速弹性凸轮机构的性能。Chew等提出了一种减少凸轮残余振动的直接方法。Wiederrich对多自由度凸轮系统残余振动准则进行了分析。Chew等运用优化理论依靠控制从动件上有效的弹簧力来实施凸轮机构的动态设计。Yamada等则应用反馈控制来减少残余振动以获得系统的精确定位。
总之,凸轮传动系统的特性分析包含运动特性、速度特性、加速度特性和载荷特性,其分析的目的是控制凸轮传动系统的精度,由于凸轮传动系统本身的特性决定了工作过程中存在动态变化,这些动态特性将影响凸轮的传动精度,必须综合分析以解决动态控制的稳定性,同时为强度设计和摩擦学设计提供数据。

图1 凸轮当量机构图
凸轮传动系统的失效分析
凸轮传动系统的失效包括凸轮及与其相联系的相关零部件的失效。其主要形式为零部件的磨损、零部件的变形、振动稳定性、零部件的疲劳点蚀及一般的强度问题。磨损是发生在相对运动的部位,包括凸轮旋转轴与轴承、凸轮与从动件之间的接触、从动件的支撑等,产生磨损将使间隙增大,造成运动控制精度下降,这是摩擦学设计主要解决的问题,也是凸轮传动系统设计的关键;零部件的变形分为弹性变形和塑性变形,为了控制运动精度,弹性变形必须被限制,由于凸轮传动系统运动的动态特性,要充分考虑到极限运动状态的弹性变形;塑性变形是由于材料在高应力作用下产生塑性流动,通过材料的选择和处理将予以解决;振动稳定性是考虑凸轮传动系统在不稳定载荷和运动状态的运动稳定性问题,特别是高速凸轮传动系统尤其重要,稳定性分析不仅解决凸轮传动系统的运动稳定性,同时可分析载荷的变化特性及极限载荷,对磨损和润滑设计提供依据;疲劳点蚀是高副接触的主要失效形式,影响运动的平稳性;其它强度问题以力学基本计算解决。
3 润滑计算

凸轮润滑分析的简化
页: [1]
查看完整版本: 凸轮传动系统的摩擦学设计

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网