超微细切削加工的技术难点及解决措施与方法
微细切削加工主要是指对零件尺寸在1mm以下、加工精度为0.01~0.001mm的微细尺寸零件的加工;超微细加工是指对尺寸在1µm以下的超微细零件的加工;纳米级超微细加工是指对微细度为1nm以下的零件进行的加工。实现纳米级超微细切削加工主要存在以下技术难点:材料微量加工性的影响
材料的去除过程不仅取决于切削刀具,同时也严格受制于被加工材料本身。超微细切削加工材料的选择以纳米级的表面质量为前提,称为材料的“微量加工性”(可用纳米级表面粗糙度及在某一加工距离上对刀具磨损的可忽略性来定义)。影响材料微量加工性的因素包括被切削材料对金刚石刀具的内部亲合性(化学反应)、材料本身的晶体结构、缺陷、分布和热处理状态等(如多晶体材料的各向异性对零件加工表面完整性具有较大影响)。
单位切削力大
微细切削是一种极薄切削,切削厚度可能小于晶粒的大小,故切削力的特征是切削力微小,但单位切削力非常大。实现纳米级超微细加工的物理实质是切断材料分子、原子间的结合,实现原子或分子的去除,因此切削力必须超过晶体内部的分子、原子结合力。当切削深度和进给量极小时,单位切削面积上的切削力将急剧增大,同时产生很大的热量,使刀刃尖端局部区域的温度升高,因此在微细切削时对刀具要求较高,需采用耐磨、耐热、高温硬度高、高温强度好的超硬刀具材料。在切削铝合金等有色金属时,最常用的是金刚石刀具。
刃口圆弧半径对超微量切削厚度的限制
刀具刃口半径限制了其最小切削厚度,刀具刃口半径越小,允许的最小切削厚度也越小。由表1可知
hDmin=(0.165~0.246)r
目前常用的金刚石刀具的刀刃锋利度约为r=0.2~0.5µm,最小切削厚度可达0.03~0.15µm;经过特殊刃磨的刀具可达r=0.1µm,最小切削厚度可达0.014~0.026µm。若需加工切削厚度为1nm的工件,刀具刃口半径必须小于5nm,而目前对这种极为锋利的金刚石刀具的刃磨和应用都非常困难。
刀具的磨损和破损
由于金刚石刀具存在微磨损,在切削一段时间后,刀具磨损会逐渐加剧,有时甚至会突然恶化。金刚石刀具的失效有两种形式:崩刃和磨损。金刚石刀具的机械磨损和微观崩刃是由刀刃处的微观解理造成的,其磨损的本质是微观解理的积累。累积的金刚石刀具磨损主要发生在刀具的前、后刀面上,在经过数百公里的切削长度之后,这种磨损变为亚微米级磨损。由于氧化、石墨化、扩散和碳化的作用,金刚石刀具也会产生热化学磨损。崩刃是当刀具刃口上的应力超过金刚石刀具的局部承受力时发生的,是最难预测和控制的损伤,而且对加工表面质量的影响比前、后刀面磨损的影响要大。降低切削温度可有效减少刀具磨损。此外,在充满饱和碳气体中进行切削也可抑制金刚石刀具的碳化作用。
切削过程中的微振动
工件表面形貌是由于刀具的轮廓映射到工件上的结果,因此加工表面粗糙度由刀具和工件之间相对运动的精度及刀具刃口形状决定。微细切削时,由于切削深度常常小于材料的晶粒直径,所以相当于对一个个不连续体进行切削。这种微观上的断续切削及机床的动特性会引起切削过程中的微振动。微细切削中的微振动对加工表面质量的影响也不容忽略。
文章关键词: 超微细切削加工
页:
[1]