Just954926 发表于 2011-7-13 23:52:54

陶瓷材料的超精密磨削加工

1 引言
陶瓷材料具有抗酸、碱、盐腐蚀、耐高温、压电位移等优良特性,应用范围非常广泛。但陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差,加工难度大。采用超精密切削、磨削工艺或传统的抛光工艺加工陶瓷工件时,如果加工参数不尽合理,则加工后的工件表面会产生裂纹、表面破损等缺陷。本文主要探讨超精密磨削加工陶瓷等脆性材料时加工参数对工件表面质量的影响,以便为脆性材料的超精密磨削加工提供科学依据。
2 试验条件
试验用超精密磨床的磨头主轴采用具有很高转速和回转精度的空气轴承主轴;工件主轴采用具有很高刚性、回转精度和振动吸收率的气浮轴承主轴。磨床磨削深度可控制在0.1µm以内。
磨削试验采用Moore公司生产的5种不同型号的树脂焊接金刚石磨粒砂轮,砂轮型号及磨粒尺寸列于下表。金刚石砂轮层的厚度为3mm,采用Gc#400型修整器在砂轮圆周速度vs=160m/min、修整器速度vw=0.6m/min和切削深度a=1µm的条件下对金刚石砂轮进行修整。磨削工件时采用酒精作为冷却液。
表 试验用金刚石砂轮
砂轮型号
磨粒尺寸(µm)
平均磨粒尺寸(µm)
SD3000-75-B
2~6
4
SD1500-75-B
8~15
11.5
SD8000-75-B
20~40
30
SD400-75-B
40~60
50
SD200-75-B
90~110
100
采用DI公司制造的Nanoscope ⅢA扫描探针显微镜对磨削表面进行观察并测量其表面粗糙度及表面轮廓。
3 试验结果与讨论
采用传统的磨削方法加工陶瓷及其它硬度高、脆性大的脆性材料时,磨削后的工件表面会产生裂纹。本试验采用超精密磨头在不同的加工条件下磨削陶瓷材料,加工完毕后,采用Nanoscope ⅢA扫描探针显微镜进行观测。由观测结果可知,磨削表面可分为三种模式:断裂模式、断裂+塑性模式、塑性模式,图1所示为磨削模式与磨削条件(砂轮进给量与平均磨粒尺寸)之间的关系。由图1可看出,塑性磨削模式能利用平均磨粒尺寸小于18.5µm,或平均磨粒尺寸最大值不超过25µm的金刚石砂轮进行磨削。

图1 磨削模式与磨削条件的关系

图2 砂轮平均磨粒尺寸与磨削表面粗糙度之间的关系

图3 砂轮进给量对磨削表面粗糙度的影响
图2所示为金刚石砂轮的磨粒尺寸与磨削表面粗糙度之间的关系。显然,磨削表面与抛光表面一样,其表面粗糙度取决于磨粒尺寸的大小。正如图1所示,采用不同平均磨粒尺寸的金刚石砂轮进行磨削,其加工表面结构有着很大不同。
图3所示为采用SD1500-75-B金刚石砂轮磨削时表面粗糙度与进给量之间的关系曲线(所有表面均在塑性模式下进行磨削)。由图可知,磨削表面粗糙度主要取决于砂轮的进给量,而磨削深度和磨削方向对磨削表面粗糙度并无影响。
当采用SD3000-75-B金刚石砂轮在v=1200m/min,f=3.6µm/r,a=1µm条件下对陶瓷样品进行磨削时,陶瓷表面处于塑性域磨削模式。图4和图5分别为用Nanoscope ⅢA扫描探针显微镜测得的陶瓷磨削表面显微图形及其表面轮廓形貌。测得的陶瓷表面粗糙度值为rms4.15nm,Ra3.07nm和P-V32.17nm,其表面粗糙度值优于用抛光方法加工的光学表面。

图4 陶瓷磨削表面显微图

图5 陶瓷磨削表面轮廓形貌
页: [1]
查看完整版本: 陶瓷材料的超精密磨削加工

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网