强光离子渗金属
强光离子渗金属技术,可使钨、钼、铬、钛、镍、银、铜、硅等多种金属渗入到普通钢及其他金属中去,并可进行多元共渗,渗入深度可达300μm以上。使金属表面具有耐高温氧化、耐腐蚀、耐磨擦、可焊性等性能。渗钨、钼、铬可使金属零件耐1000℃左右的高温氧化及高温下各种烈性气体的腐蚀。金属模具表面渗入钨、钼、铬后,再应用常规渗碳淬火工艺,可使模具表面形成钨、钼、铬的碳化物,大大加强了表面硬度。渗钛可耐海水腐蚀。渗镍可解决金属零件表面的软钎焊性。金属零件表面渗银、铜,可提高金属表面的导电性等等。金属表面渗不同金属元素后,被渗金属表面便具有了所渗元素的物理化学性能。1 试验装置的结构
强光离子渗镀金属试验装置如图1所示。
1-钟罩 2-阳极 3-偏压环 4-桶形阴极
5-阴极座 6-工件 7-夹具 8-偏压电源
9-高压电源 10-渗镀料 11-上盖板
图1 结构示意图
主电源输出0~1000V供阴、阳极。配置的偏压电源,输出0~450V,供偏压极。真空室有氩气入口和真空抽气口,阴极座5接主电源负端,阴极2接主电源正端。
阴极桶是上端开口,桶的形状可以是圆形、锥形、正方形或异形。桶的上端有开口板,开口板的开口形状可以是圆形或其它形状,开口面积为桶形截面的1/5~1/2。阳极板为圆形,其直径等于偏压环直径。桶截面积等于阳极板面积。阳极距阴极上端开口板之距为30~70mm,偏压环距阴极上端为10~25mm,工件可以与阴极同电位,也可以悬浮或接地。氩气压力为1.33~13.3Pa。
先将真空室抽至1.33×10-3Pa,然后通入氩气,氩气压力为1.33~13.33Pa,偏压为200~450V,逐渐增大主电源电压至500~600V,先出现第一次电流突变,产生辉光。然后继续加大主电源电压至600~800V,出现第二次电流突变。第二次电流突变以后,主电源电压加至适当值,使桶形阴极内温度达800~1200℃。基体为普通钢,工件温度控制在800~1050℃。第二次电流突变以后,桶形阴极四周的渗镀料在高温离子区中迅速溅射出金属原子。渗镀料金属原子在高能离子区中又被电离成金属离子。渗料金属离子在电场作用下渗入到工件表层。
2 放电特性
直流辉光放电已为大家所熟悉,其结构是在真空管内放置两块平行板,分别接直流电源的正负极。真空管内充氩气压力为2.6Pa,辉光放电的伏安特性曲线如图2中曲线Ⅰ所示。这种放电特性只出现一次电流突变,一次电流突变后,放电由正常辉光放电向异常辉光放电转化。其实验数据见表1。由表1可见,在给定条件下,直流电压为1000V时,放电电流只有10mA。
Ⅰ-辉光放电特性 Ⅱ-强光放电特性
图2 辉光放电的伏安特性曲线图
表1 实验数据
U/V
I/mA
550
4.0
(1)氩气压力=2.6Pa
(2)阴阳级板距离=7cm
(3)阴阳极板直径=13cm
560
4.0
600
5.0
640
6.0
700
7.0
750
8.0
800
8.6
900
9.2
1000
10.0
在相同的氩气压力2.6Pa的情况下,强光放电的伏安特性曲线如图2中曲线Ⅱ所示,(这种放电特性曲线在开始初级阶段与曲线Ⅰ相同),均产生一次电流突变。但一次电流突变之后,在辉光放电阶段又产生了二次电流突变。二次电流放电后,放电电流增加几百倍,其实验数据见表2。在给定条件下,直流电压为560V时,放电电流为3900mA。由此可见,桶形阴极的放电电流远远大于平板式二极辉光放电电流。二次电流突变之后,随着直流电压的增加,放电电流增加,桶形阴极内出现了耀眼的强光,此阶段的放电我们称为“强光放电”。在强光放电条件下,渗料、工件的温度迅速升高到1000℃左右,由渗料产生出的渗料金属离子在电场力作用下渗入到工件内部。
表2 实验数据
U/V
I/mA
540
10.0
(1)氩气压力=2.6Pa
(2)阴阳级板距离=7cm
(3)阴阳极板直径=13cm
562
15.0
569
17.5
570
18.0
589
20.0
439
3200.0
478
3210.0
479
3220.0
487
3500.0
512
3700.0
560
3900.0
图3为45号钢渗钼的金相照片,工件温度为1050℃,渗镀时间为3h。本装置在给定条件下,氩原子首先被电离成为氩离子,氩离子在电场作用下轰击桶形阴极和渗料,产生二次电子和金属原子。
图3 45号钢渗钼的金相照片
金属原子在氩离子的碰撞下产生金属离子,同时二次电子与氩原子相撞又产生更多的氩离子,氩离子轰击渗料又产生更多的二次电子和金属离子。在极短的时间内形成放电。在阴极桶内产生了大量的电子和各种离子。由于渗料是丝状的,表面积大,大量渗料原子被溅射出来,继而在放电电场内形成了大量的金属离子。金属离子在电场力作用下渗入工件。在桶形阴极内,不是单纯的气体放电,而是以氩离子、金属离子、电子等共同参与的放电。这种放电形式导致了离子的“雪崩”,产生了放电电流突变。强光放电由两次击穿叠加而成,第一次击穿产生在阳极与上开口板之间。第二次击穿产生在阴极桶内。第二次击穿后,放电电流产生突变。选择相同的工艺参数,如氩气压力,阴极电压与偏压极电压等。两种放电特性有很大的区别。
强光放电,使渗丝和工件温度迅速提高1000℃以上,观察到桶形阴极内出现了耀眼的白光,所以称之为“强光”。由光强度计测量,“强光”比“辉光”的光强度增加14倍以上。由光电高温计测量,“强光”的温度低于“弧光”的温度,而“强光”的温度高于“辉光”的温度。
在桶形阴极内,由于螺旋状渗料丝的温度增加,说明丝状渗料的电子发射能力明显增加。在高温下,阴极表面的电子发射率用Je表示。
则:Je=AT2e-(eφ/KT)(A/cm2)
式中:A为发射常数,K为玻耳兹曼常数,eφ为逸出功,T为阴极温度。由公式可见,阴极电子发射率Je与阴极温度的平方成正比。
这些发射电子在未与其它粒子发生碰撞之前,将不改变其运动方向。由于桶形阴极内均为负电位,当电子与桶壁接触之前因受到斥力而改变方向。当折向另一方向时,与桶壁接触之前又受到斥力,电子则又折向另一方向。电子在桶形阴极内来回摆动若干次之后,最终由上开口飞向阳极。电子在桶内摆动的过程大大加长了电子在桶内运动的路程,相应增加了与其它粒子相撞的机会,这就使在桶形阴极内的大量氩离子电离。同时由于氩离子溅射丝状渗料的作用,金属原子被溅射到桶形阴极内。这些电子、氩离子又与金属原子相撞,从而产生大量的金属离子。在这个半封闭的系统中,很短的时间内产生了离子的“雪崩”,使大量金属离子参与了放电过程。由于金属离子质量比较大,在等离子区中获得了一定的能量,向工件移动,最后渗入工件。
3 结束语
强光离子渗金属,是利用“二次放电”将渗料金属离子渗入到钢基体表面。可以在稀薄气体中将工件升到高温状态,为金属离子渗入到普通钢基体表面提供了有利条件。【MechNet】
文章关键词:
页:
[1]