大型汽轮发电机组故障诊断现状与发展(二)
2故障诊断技术研究的主要内容及其概况30多年来,故障诊断技术不断吸收各门科学技术发展的新成果,诊断的理论与应用有了很大的发展和进步,它涉及系统论、控制论、信息论、检测与估计理论、计算机科学等多方面的内容,成为集数学、物理、力学、化学、电子技术、信息处理、人工智能等基础学科以及各相关专业学科于一体的新兴交叉学科。故障诊断技术研究的主要内容包括以下4个方面:故障机理;故障信息处理技术;故障源分离与定位技术;人工智能技术的应用研究。
2.1故障机理的研究[5~7]
故障机理的研究,是以可靠性和故障物理为理论基础,研究故障的物理学或数学模型,进行物理模拟或计算机仿真,其目的是了解故障的形成和发展过程,明确故障的动态学特征,从而进一步掌握典型的故障信号,提取故障征兆,建立故障样板模式。故障机理的研究是故障诊断的基础,是获得准确、可靠的诊断结果的重要保证。
为了故障诊断工作的顺利开展,国内外很多科研人员和科研部门在故障机理方面作了大量的研究工作。例如,具有多年工厂实践经验的美国人John Sohre是研究涡轮机械故障机理的权威,他于1968年发表的论文“高速涡轮机械运行问题的起因和治理”,清晰简洁地描述了典型的机械故障征兆及其可能成因,并将典型的故障划分为9类37种。美国Bently Nevada公司的转子动力学研究所对转子和轴承系统典型故障作了大量的试验研究,并发表了许多很有价值的论文。日本的故障诊断专家白木万博自20世纪60年代以来发表了大量的故障诊断文章,积累了丰富的现场故障处理经验,并进行了理论分析。国内自20世纪80年代中期以来,清华大学、上海交通大学、哈尔滨工业大 学、西安交通大学、西安热工研究院等单位,在故障机理的研究方面做了大量的工作,发表了许多有价值的文章。
虽然在故障机理的研究方面已经取得了大量的成果,但大型汽轮机组的振动故障机理仍然没有全部明确,亟须进一步的深入研究。
2.2故障信息处理技术的研究[8~10]
故障信息处理技术是故障诊断的前提,它在提高诊断的准确性和可靠性方面处于非常重要的地位。常规的故障信息处理技术包括故障信号检测和故障信号分析处理两个部分。测量的信号通常是振动、噪声、温度、压力、电流、电压等信号中的一种或几种。随着电子技术和计算机技术的迅速发展,各种传感器越来越小型化、精密化,近年来,一些国外企业以与一般传感器同样的价格推出了智能传感器,使得故障信号检测在不影响系统运行的前提下更易于实现,而且在满足高精度要求的同时提高了其本身的可靠性。最近,日本出现了非接触式测量技术,大大地拓宽了故障信号的测量范围,虽然在测量精度上暂时还未能满足要求,但它预示了信号检测技术的一个发展方向。
故障信号分析处理是对检测到的各种状态信息进行加工、变换,以提取故障征兆。目前,应用最广泛的故障信号分析处理方法是傅立叶(Fourier)分析和相应的FFT快速算法。借助于FFT算法实现的信号处理有频谱分析、相关分析、相干分析、传递函数分析、细化谱分析、时间序列分析、倒频谱分析、包络分析等。这些分析方法在故障诊断过程中起到了重要的作用,但傅立叶分析方法只适合于分析连续的、平稳的时域信号。为了有效地分析处理工程应用领域中大量的非平稳信号,人们把小波(wavelet)和分形(fractal)这两种新的工具引入到故障信号的分析处理中。它们的理论和应用研究十分活跃,预示着在故障诊断领域中将获得广泛的应用。
文章关键词:
页:
[1]