高功率光纤激光器解析
所谓高功率光纤激光器,是相对于光纤通讯中作为载波的低功率光纤激光器而言(功率为mW级),是定位于机械加工、激光医疗、汽车制造和军事等行业的高强度光源。高功率光纤激光器巧妙地把光纤技术与激光原理有机地融为一体,铸造了21世纪最先进和最犀利的激光器。即使是在激光技术发达的国家,光纤激光器也是尖端、神秘和充满诱惑的代名词。一、光纤技术
光纤激光器的最大特点就是一根光纤穿到底,整台机器高度实现光纤一体化。而那些只在外部导光部分采用光纤传输或者LD泵浦源采用尾纤来耦合的激光器都不是真正意义上的光纤激光器。
光纤是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全反射机理。普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9-62.5μm) 、中间低折射率硅玻璃包层 (芯径一般为125μm) 和最外部的加强树脂涂层组成。光纤可分为单模光纤和多模光纤。单模光纤:中心玻璃芯较细(直径9μm+0.5μm),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。多模光纤:中心玻璃芯较粗 (50μm+1μm),可传多种模式的光,但其模间色散较大,传输的光不纯。
图1用于高功率光纤激光器中的光纤不是普通的通讯光纤,而是掺杂了多种稀有离子、结构更为复杂、耐高辐射的特种光纤---双包层光纤。
图2双包层光纤比普通光纤在纤芯外多了一个内包层,对泵浦光而言是多模的,直径和受光角较大,能大肆吸收高亮度的多模泵浦光,在光纤内聚集大量的光子。实践证明:横截面为D型和矩形的双包层光纤具有95%的耦合效率因而得到广泛应用。对于脉冲光纤激光器而言,一个重大的课题就是如何提高光纤的耐辐射能力。目前世界上光纤激光器的单脉冲能力可以达到20,000W,一根头发丝大小的光纤如何能承受如此高的激光辐射?所以必须考虑在光纤内掺杂某种特殊离子防止光纤被烧坏。比如掺杂了铈离子的光纤就是在核辐射情况下,既不会因染色而失去透光能力,更不会受热变形。
二、传统固体激光器
激光器说白了就是一个波长转换器---波长短的泵浦光激励掺杂离子转换成长波长的光辐射,它一般由3部分组成:工作物质、谐振腔和泵浦系统。由于光纤激光器本质上属于固体激光器,所以在此仅比较一下传统Nd:YAG激光器的特性。
工作物质:
工作物质是固体激光器的心脏,它的物理性质由基质材料决定,光谱性质由激活离子内的能级结构决定。在YAG单晶体中掺入三价的Nd3+,便构成了目前广泛应用的YAG激光晶体。它主要有如下明显的特点:
1、YAG棒生长速度很慢,一般小于1mm/h。目前最大晶体棒的直径为40mm,长180mm,所以激光增益从根本上受到限制,无法实现特高功率激光输出。
2、工作物质只要是晶体就无法回避激光棒的热透镜效应、热应变和热致双折射现象,严重时出现“激光淬灭”和激光棒断裂;所以,YAG激光器效率很低。
3、Nd:YAG棒的主要吸收谱线在810nm附近,其带宽约为2nm,所以要严格控制泵浦源的线宽,否则吸收无效反而造成热损耗,所以YAG激光器一般要加庞大的冷却系统。
4、由于Nd3+半径与Y3+半径不完全相符,Nd3+离子掺入YAG晶体中在结构上存有天生的缺陷造成光学瑕疵,不能够在YAG晶体中掺入高浓度的Nd3+来实现高增益,这同时也是影响激光器光学性能的根本。
5、处于亚稳态能级的Nd3+离子平均寿命长为300us,其最佳Q开关重复频率只能是1/300us,即3.3Khz,所以YAG激光器的Q开关一般设定为3-5Khz而无法实现高频工作。
光学谐振腔:
传统光学谐振腔主要由工作物质两端镀了膜的两块镜片组成,起着正反馈、选模和输出耦合的作用。比较光纤激光器独特的腔结构,传统光学谐振腔主要有如下特点:
1、由于是由两块镜片组成,谐振腔受到机械振动、热透镜效应以及晶体棒热焦距扰动影响,从而造成激光无法正常出光,需极为烦琐的调光与监控。
2、腔镜对灰尘、水分和杂物十分敏感,需经常专业擦拭,否则影响激光功率。
3、腔长长度与输出功率是一对矛盾,光束质量与激光能量是一对矛盾;只有采取昂贵的选模/锁模腔才可以实现高质量的大功率输出。
4、从激光晶体激励出来的初始激光不是单模光,而是一束直径为几毫米的光束,必须通过腔镜衰减或选模机制来实现单模输出,从而降低了整体转换效率。
泵浦系统:
由于灯泵系统的优缺点广为人知,在此仅谈谈DPSSL的泵浦方式的某些特性:
1、由于DPPSSL主要是在泵浦系统上稍作改进,它只能缓解激光棒热效应,而无法从本质上根除晶体激光器的这个弊病。
2、需严格控制LD的波长在808-812nm之间,要么加冷却系统,要么加波长锁定器,这是由于Nd :YAG晶体光谱特性所决定的。
3、如泵浦光聚焦在几毫米的晶体端面进行端泵,一是无法实现高功率输出;二是泵浦光不能太强,否则膜层可能脱落,晶体棒无法及时散热,甚至出现棒畸变。
4、如泵浦光对晶体进行侧面泵浦,则一般为多模输出,如不采取专门措施,无法提高光束质量。
5、LD直接发射出的激光为高度高斯像散光束,在进行端泵时需增加各种光学元件把泵浦光校准、聚焦在晶体上,这些附加的光学器件必将受到机械振动、灰尘和潮湿的影响,从而降低转换效率。
三、低功率光纤激光器
普通通讯用的光纤激光器输出功率一般都是毫瓦级,其典型结构如下图:
它与我们传统加工用的工业激光的显著区别有:
1、用掺杂离子的光纤作为工作物质
2、用光纤光栅代替光学镜片构成光学谐振腔
3、LD泵浦源可以通过尾纤与掺杂光纤无缝耦合
4、导光部分也直接采用光纤输出
但 是该种激光器的单模纤芯直径只有9um,而且只能采用端泵,无法承受太高的功率密度;另外,单模纤芯对LD的模式提出了严格的要求,只有单模光才可以耦合进纤芯进行有效泵浦,可惜大功率单模LD至今无法实现;最后,强泵浦光耦合在很细的纤芯里会出现严重的非线性效应,从而改变会改变光学性能和降低转换效率。由于该种激光器受到功率的影响,一直以来只局限于光通讯领域;同时由于巨大的行业差距,几乎无人曾敢把它与激光加工联想到一块。所以,大功率输出是光纤激光器发展的最大瓶颈,几乎所有的研究工作都在围绕这个问题展开。
尽管中国绝大部分人士是在2002年以后才意识到高功率光纤激光器,可是俄罗斯至少潜心苦研了20年后有了IPG公司,英国也至少研究了30年也有了SPI。他们在冷战时代都肩负着重要的国防使命,得到了国家的鼎立支持并一直是军事领域的绝密。
四、高功率光纤激光器
下图是来自俄罗斯技术的IPG公司的高功率光纤激光器的原理图,按激光器三大组成部分浅析如下:
工作物质-----双包层特种光纤:
1、 单模纤芯由掺镱离子等元素的石英材料构成,作为激光振荡通道;而内包层则由横向尺寸和数值孔径比纤芯大的多、折射率比纤芯小的纯石英材料构成,它是接受多模LD泵浦光的多模光纤;正是因为掺杂激活纤芯和接受多模泵浦光的多模内包层分开,才得以实现了多模光泵浦而单模光输出的可能,从而无形化解了激光功率和光束质量这一矛盾。
2、整个双包层光纤采用D型等结构,旋光效应小,吸收充分,光光转换80%以上。
3、光纤两侧生出无数杈纤,每分衩可与带尾纤的LD无缝耦合形成分点泵浦,可极大地提高输出功率,同时又避免了传统端泵带来的一系列热效应问题。
5、光纤采用比普通玻璃性能更好的石英材料制成,同时掺杂耐高辐射离子,整段光纤可承受高达10,000W的激光能量而不会出现热损伤情况。
6、Yb3+没有激发态吸收,可高浓度掺杂,同时光纤可达几百米,一可大大提高激光增益,二又增大了散热面积;光纤盘在热沉上,简单风冷便可稳定工作。
7、Yb3+的吸收谱比Nd3+要宽10倍,对LD光源模式十分宽松,几乎不受波长温漂的影响,可大大转换效率。
8、Yb3+能级为简单的二能级,亚稳态寿命是Nd3+的三倍,小功率泵源就可在激发态积累贮存大量的能量,十分合适在极窄的纤芯内形成高密度的离子数反转,从而可输出稳定的强激光。
光学谐振腔----光纤光栅:
1、光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜。
2、光纤光栅是被刻在纤芯的两端,当激活离子发射出一连续宽带光传输到光栅时,它会有选择地反射回相应的一个窄带光(如1064nm),并沿原传输光纤返回振动;其余杂光则直接透射或发射到光纤外滤掉。
3、光纤光栅是在纤芯本身上刻录的,与光纤连成一体高度融合,不占任何额外体积,无任何插损,不怕任何振动和杂物的侵入。
4、光纤光栅起着激光选频、反馈和放大的功能,从而巧妙地取代了镜片式传统光学谐振腔,从根本上解决了震动、灰尘和潮湿等引起的一系列光路需调节的烦琐问题。
5、一般的通讯光纤光栅是温度敏感的,要承受高功率激光辐射,则必须采用负膨胀材料封装光纤光栅,把温漂系数控制在0.001nm/oC以下。
泵浦系统-----侧面泵浦:
1、采用杈纤直接熔接耦合进行侧泵,一无需任何光学元件,二可避免损伤光纤端面,三是容易提高泵源的注入。
2、新颖的蜈蚣式侧泵方式:光纤两侧生许多纤杈与LD尾纤直接熔接,从各个不同点进行单个泵浦,可避免强激光单点引起的非线性效应和模式恶化。
3、采用多个高功率LD单管代替LD集成阵列作泵浦源,一可提高光源的模式,二是易于泵源的散热提高寿命,三有利于维修更换。
4、采用发光面很宽的LD(100-250us)作为泵源可大大降低LD发光点所承受的光功率密度提高其寿命,一般可达100,000小时。
五、脉冲光纤激光器
既 然光纤激光器的谐振腔本身就是一段光纤,所以它不能像传统激光器那样在谐振腔内插入Q开关来实现脉冲输出,因为把光纤谐振腔(就是光纤)拦腰截断插入Q晶体,一会增大插入损耗,二会影响整个激光器的紧凑性而无法实现光纤一体化。所以如何实现光纤激光器的脉冲输出又是一个全新的研究课题。目前比较成熟的技术是采用MOPA(主振动功率放大)技术来实现。
MO(Master Oscillator)就是主振动器,它其实就是一个功率(10-20mw)很小的激光器,一般可选用波长合适(如1064nm)的LD。小功率LD很容易通过驱动电流来直接调制输出参数,如重复频率、脉宽、脉冲波形以及功率大小,通过尾纤把光脉冲信号串联进PA(Power Amplifier)---光纤功率放大器进行光脉冲放大。光纤放大器一般只用于光纤通讯,它的原理与光纤激光器十分相似,只不过撤掉了光纤两端的光纤光栅而无法形成激光振动,只起信号放大作用。光纤放大器能严格按照MO耦合近来的种子源光进行原形放大,却不改变激光波长、重复频率、脉宽和脉冲波形。所以脉冲激光器采用MOPA方式,既可得到优良的激光特性,又能大大提高输出激光的亮度。这是传统方式所无法达到的综合效果。
从MO出来的光脉冲通过PA放大器时,脉冲的各部位获得的增益会不同:脉冲前沿的增益按指数规律增加,脉冲后部的增益逐渐减少,脉冲后沿增益最小,尤其是如果脉冲信号光很强,或脉宽较宽时,脉冲后沿根本就得不到放大。所以在PA中一般要加上增益平坦器,使得脉冲各部位得到均匀放大(如果入射信号的能量很小或者脉冲很短,整个脉冲可得到均匀放大,而且脉冲形 状保持不变)。
激光脉冲通过放大器之后,其波形的变化与入射信号脉冲的前沿上升速度有着直接的关系。如果信号光是高斯型脉冲,因脉冲前沿上升比指数还快,所以经过放大后,脉宽可以得到压缩;如果是指数型脉冲,形状和脉宽几乎都不变化;如果输入脉冲前沿上升时间比指数函数更缓慢,则放大后其脉宽会变宽。一般为了获得高功率、窄脉宽的激光脉冲,可以在信号进入放大器之前,采用削波技术切去脉冲的缓慢上升部分,使其脉冲前沿变陡,即能达到压缩脉宽的目的。
文章关键词: 光纤 激光器
页:
[1]