魔神 发表于 2009-11-23 23:14:12

圆弧圆柱蜗杆的齿廓测量与参数反求

&nbsp;&nbsp;&nbsp;&nbsp;<STRONG><FONT face="Times New Roman">1</FONT>.引 言</STRONG><P>  按<FONT face="Times New Roman">GB10086-88</FONT>规定,圆弧圆柱蜗杆(<FONT face="Times New Roman">ZC</FONT>)有三种形式:圆环面包络圆柱蜗杆(<FONT face="Times New Roman">ZC<SUB>1</SUB></FONT>)、圆环面圆柱蜗杆(<FONT face="Times New Roman">ZC<SUB>2</SUB></FONT>)和轴向圆弧齿圆柱蜗杆(<FONT face="Times New Roman">ZC<SUB>3</SUB></FONT>)。本文主要介绍<FONT face="Times New Roman">ZC<SUB>1</SUB></FONT>蜗杆的测量及相关问题,<FONT face="Times New Roman">ZC<SUB>2</SUB></FONT>和<FONT face="Times New Roman">ZC<SUB>3</SUB></FONT>蜗杆的测量与<FONT face="Times New Roman">ZC<SUB>1</SUB></FONT>蜗杆类同。<BR>  <FONT face="Times New Roman">ZC<SUB>1</SUB></FONT>蜗杆是一种磨削型曲纹面蜗杆,其齿面形状取决于加工砂轮的几何参数与安装位置。在砂轮的轴平面内,产形线是圆环面母圆的一段凸圆弧;磨削时,砂轮轴线相对于蜗杆轴线偏转一个蜗杆导程角γ,砂轮的轴截面齿形角与蜗杆的法面齿形角相等,如图<FONT face="Times New Roman">1</FONT>所示。其安装参数为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_quy2mi200831311730.gif"></P><P align=left>式中 <EM>ρ</EM>——砂轮轴截面齿廓圆弧半径<BR>   <EM><FONT face="Times New Roman">r</FONT></EM>——蜗杆分度圆半径<BR>   <FONT face="Times New Roman"><EM>a</EM><SUB>n</SUB></FONT>——蜗杆分度圆的法向齿形角<BR>   <EM><FONT face="Times New Roman">a</FONT></EM>——砂轮齿廓圆弧中心到蜗杆轴线与砂轮轴线的公垂线的距离<BR>   <EM><FONT face="Times New Roman">b</FONT></EM>——砂轮齿廓圆弧中心到蜗杆轴线的距离<BR>   <EM><FONT face="Times New Roman">d</FONT></EM>——砂轮齿廓圆弧中心到砂轮轴线的距离<BR>   <EM><FONT face="Times New Roman">A</FONT></EM>——砂轮轴线与蜗杆轴线间的距离</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_ibnkcq200831311813.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">1</FONT> 砂轮安装位置</STRONG></P><P align=left><STRONG>  <FONT face="Times New Roman">2</FONT>.<FONT face="Times New Roman">ZC<SUB>1</SUB></FONT>蜗杆齿面方程</STRONG></P><P align=left>  如图<FONT face="Times New Roman">2</FONT>所示,设蜗杆坐标系数为<EM>σ</EM>(<EM><FONT face="Times New Roman">o</FONT></EM>-<EM><FONT face="Times New Roman">xyz</FONT></EM>),砂轮坐标系数为<EM>σ</EM><FONT face="Times New Roman"><SUB>1</SUB></FONT>(<EM><FONT face="Times New Roman">o</FONT></EM>-<FONT face="Times New Roman"><EM>x</EM><SUB>1</SUB><EM>y</EM><SUB>1</SUB><EM>z</EM><SUB>1</SUB></FONT>)。两坐标系的<EM><FONT face="Times New Roman">z</FONT></EM>与<FONT face="Times New Roman"><EM>z</EM><SUB>1</SUB></FONT>交错,交错角为蜗杆导程角<EM>γ</EM>,最短距离为<EM><FONT face="Times New Roman">A</FONT></EM>,且<EM><FONT face="Times New Roman">x</FONT></EM>轴在<EM><FONT face="Times New Roman">z</FONT></EM>与<FONT face="Times New Roman"><EM>z</EM><SUB>1</SUB></FONT>的公垂线上。由文献[<FONT face="Times New Roman">1</FONT>]可知,在已知砂轮参数的条件下,<FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆齿面方程为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_sv8kxc200831311833.gif"></P><P align=left>式中 <EM>φ</EM>,<EM>θ</EM>——砂轮表面的参数<BR>   <EM>ψ</EM>——磨削时蜗杆的转角<BR>   <EM><FONT face="Times New Roman">p</FONT></EM>——蜗杆螺旋参数,<IMG src="http://www.chmcw.com/upload_files/article/20/1_80ujcu200831311855.gif"><FONT face="Times New Roman"><BR></FONT>   <EM><FONT face="Times New Roman">n</FONT></EM>——蜗杆头数<BR>  (<FONT face="Times New Roman">2</FONT>)式中<EM>ρ</EM>,<EM><FONT face="Times New Roman">A</FONT></EM>,<EM>γ</EM>,<EM><FONT face="Times New Roman">a</FONT></EM>,<EM><FONT face="Times New Roman">d</FONT></EM>的意义与(<FONT face="Times New Roman">1</FONT>)式相同。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_cdvrd6200831311852.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">2</FONT> 坐标系的设置</STRONG></P><P align=left><STRONG>  <FONT face="Times New Roman">3</FONT>.<FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆轴向齿廓方程</STRONG></P><P align=left>  对于蜗杆轴向齿廓,<EM><FONT face="Times New Roman">y</FONT></EM>=<FONT face="Times New Roman">0</FONT>成立,故由(<FONT face="Times New Roman">2</FONT>)式中的第二式得</P><P align=left><IMG src="http://www.chmcw.com/upload_files/article/20/1_ume3wq200831311915.gif"></P><P align=left>式中 <EM>υ</EM>=(<EM>ρ</EM><FONT face="Times New Roman">cos</FONT><EM>θ</EM>-<EM>α</EM>)<FONT face="Times New Roman">sin</FONT><EM>γ</EM>-(<EM>ρ</EM><FONT face="Times New Roman">sin</FONT><EM>θ</EM>+<EM><FONT face="Times New Roman">d</FONT></EM>)<FONT face="Times New Roman">cos</FONT><EM>γ</EM><FONT face="Times New Roman">sin</FONT><EM>φ</EM><BR>   <EM>ω</EM>=(<EM>ρ</EM><FONT face="Times New Roman">sin</FONT><EM>θ</EM>+<EM><FONT face="Times New Roman">d</FONT></EM>)<FONT face="Times New Roman">cos</FONT><EM>φ</EM>-<FONT face="Times New Roman"><EM>A</EM><BR></FONT>  将(<FONT face="Times New Roman">4</FONT>)、(<FONT face="Times New Roman">3</FONT>)两式联立,即可求出轴向齿廓方程,它是一个非线性超越方程。实际测量中,通常给出一系列<FONT face="Times New Roman">x<EM><SUB>i</SUB></EM></FONT>(<EM><FONT face="Times New Roman">i</FONT></EM>=<FONT face="Times New Roman">1</FONT>,<FONT face="Times New Roman">2</FONT>,…,<FONT face="Times New Roman">n</FONT>),利用计算机即可方便地求解出相应的<FONT face="Times New Roman">z<EM><SUB>i</SUB></EM></FONT>值。</P><P align=left><STRONG>  <FONT face="Times New Roman">4</FONT>.蜗杆齿廓的测量原理</STRONG></P><P align=left>  图<FONT face="Times New Roman">3</FONT>所示为蜗杆的齿廓测量原理图。具有平行簧片机构的线性测头安装在一个能同时在<FONT face="Times New Roman">X</FONT>方向(蜗杆径向)与<FONT face="Times New Roman">Z</FONT>方向(蜗杆轴向)运动的测量滑板上。计算机控制滑板在<FONT face="Times New Roman">X</FONT>方向和<FONT face="Times New Roman">Z</FONT>方向运动时,测头能沿蜗杆齿廓进行扫描测量。其中滑板的<FONT face="Times New Roman">Z</FONT>向运动是大行程的“粗”运动,具有微位移功能的测头传感器用于补偿滑板的运动误差,并同时感受齿形误差。在扫描测量过程中,<FONT face="Times New Roman">X</FONT>方向的位移传感器等间距地发出采样信号,对测头传感器和<FONT face="Times New Roman">Z</FONT>向位移传感器进行采样。对于实际齿廓上的任一被测点,每一个<FONT face="Times New Roman">x<EM><SUB>i</SUB></EM></FONT>均有与之相对应的<FONT face="Times New Roman">Z</FONT>向位移传感器读数<FONT face="Times New Roman">l<EM><SUB>i</SUB></EM></FONT>和测头读数δ<EM><FONT face="Times New Roman"><SUB>i</SUB></FONT></EM>。该点的实际轴向坐标<FONT face="Times New Roman">z<EM><SUB>ai</SUB></EM></FONT>为</P><P align=left><FONT face="Times New Roman">z<EM><SUB>ai</SUB></EM></FONT>=<FONT face="Times New Roman">l<EM><SUB>i</SUB></EM></FONT>+δ<EM><FONT face="Times New Roman"><SUB>i&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SUB></FONT></EM>(<FONT face="Times New Roman">5</FONT>)</P><P align=left>假设在一个齿廓上测量<FONT face="Times New Roman">n</FONT>点,则实际齿廓可表征为这些点的集合Σ<SUB><FONT face="Times New Roman">a</FONT></SUB></P><P align=left><EM>Σ<FONT face="Times New Roman"><SUB>a</SUB></FONT></EM>:{(<FONT face="Times New Roman">x<EM><SUB>i</SUB></EM></FONT>,<FONT face="Times New Roman">z<EM><SUB>ai</SUB></EM></FONT>)|<EM><FONT face="Times New Roman">i</FONT></EM>=<FONT face="Times New Roman">1</FONT>,<FONT face="Times New Roman">2</FONT>,…,<EM><FONT face="Times New Roman">n</FONT></EM>}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (<FONT face="Times New Roman">6</FONT>)</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_e8xclp2008313111024.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">3</FONT> 测量原理示意图</STRONG></P><P align=left>  对应<FONT face="Times New Roman">x<EM><SUB>i</SUB></EM></FONT>,根据(<FONT face="Times New Roman">3</FONT>)式可求出蜗杆齿廓上相应的<FONT face="Times New Roman">Z</FONT>向理论坐标值,在此记为<FONT face="Times New Roman">z<SUB>i</SUB></FONT>,则理论齿廓可表征为集合<EM>Σ</EM></P><P align=left><EM>Σ</EM>:{(<FONT face="Times New Roman">x<EM><SUB>i</SUB></EM></FONT>,<FONT face="Times New Roman">z<EM><SUB>i</SUB></EM></FONT>)|<EM><FONT face="Times New Roman">i</FONT></EM>=<FONT face="Times New Roman">1</FONT>,<FONT face="Times New Roman">2</FONT>,…,<EM><FONT face="Times New Roman">n</FONT></EM>}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (<FONT face="Times New Roman">7</FONT>)</P><P align=left>  由(<FONT face="Times New Roman">6</FONT>)、(<FONT face="Times New Roman">7</FONT>)式可求出蜗杆在轴向的齿形误差集合<EM><FONT face="Times New Roman">ERR</FONT></EM></P><P align=left><EM><FONT face="Times New Roman">ERR</FONT></EM>: {<EM><FONT face="Times New Roman">err</FONT></EM>(<EM><FONT face="Times New Roman">i</FONT></EM>)=<FONT face="Times New Roman">z<EM><SUB>ai</SUB></EM></FONT>-<FONT face="Times New Roman">z<EM><SUB>i</SUB></EM></FONT>|<EM><FONT face="Times New Roman">i</FONT></EM>=<FONT face="Times New Roman">1</FONT>,<FONT face="Times New Roman">2</FONT>,…,<EM><FONT face="Times New Roman">n</FONT></EM>}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (<FONT face="Times New Roman">8</FONT>)</P><P align=left>  如果该蜗杆共测量<FONT face="Times New Roman">m</FONT>个轴向齿廓,每一齿廓上采样<FONT face="Times New Roman">n</FONT>个点,最后得到齿形误差在轴向的计算公式为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_3h0oxa2008313111054.gif"></P><P align=left><STRONG>  <FONT face="Times New Roman">5</FONT>.蜗杆参数反求</STRONG></P><P align=left>  在生产实践中,常常遇到与蜗杆相关的另一类问题:在拥有蜗杆实物的情况下,如何获得该蜗杆的几何参数以及加工安装参数。这是一个反求工程问题。<EM><FONT face="Times New Roman">ZC</FONT></EM>蜗杆的参数反求较之普通直纹面蜗杆的参数反求,其复杂之处在于如何确定<EM><FONT face="Times New Roman">ZC</FONT></EM>蜗杆的齿廓参数。除齿廓参数外,<EM><FONT face="Times New Roman">ZC</FONT></EM>蜗杆的其它参数均能采用常规量具或通用量仪测得。本文着重探讨<FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆齿廓参数的确定方法。<BR>  <FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆的齿廓参数反求可分解成两个问题:(<FONT face="Times New Roman">1</FONT>)如何获取齿廓的基本信息,即齿廓测量问题;(<FONT face="Times New Roman">2</FONT>)在获得齿廓信息后,如何获取齿廓参数,即齿廓信息分析问题。<BR>  利用上节介绍的测量原理,在未知齿廓参数的条件下,实现齿廓测量的关键在于如何控制测头的运动轨迹。常用的控制策略有两种:跟踪测量法与分段逼近法。<BR>  跟踪测量法是指在测量过程中,根据测头的读数变化,计算机实时控制测量滑板在<FONT face="Times New Roman">Z</FONT>向的运动速度,使测头读数在设定值附近变化而不超过测头传感器的量程,实现测头跟随齿廓形状运动。这种方法的缺点是测量速度较慢。<BR>  分段逼近法是指将齿廓分成几段,每段用直线去逼近,测头在每段作相应的直线运动,以便测头实现扫描测量。在测头量程较大的情况下,将齿廓分为两段即可满足要求。如图<FONT face="Times New Roman">4</FONT>所示,用卡尺或通用量仪测量出图示尺寸,求出比例系数<FONT face="Times New Roman">C<SUB>i</SUB></FONT>作为控制滑板运动的依据。其中<FONT face="Times New Roman"><EM>C</EM><SUB>i</SUB></FONT>为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_atmrzk2008313111111.gif"></P><P align=left>分段逼近法的优点是齿廓测量速度较快。</P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_tauje02008313111124.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">4</FONT> 齿廓分段</STRONG></P><P align=left>  获得蜗杆实际齿廓的坐标集合<EM>Σ</EM><FONT face="Times New Roman"><SUB>a</SUB></FONT>后,求解齿廓参数的问题实际变成了一个多变量优化问题。目标函数<FONT face="Times New Roman">F</FONT>为</P><P><IMG src="http://www.chmcw.com/upload_files/article/20/1_lrvpe42008313111145.gif"></P><P align=left>  其中<EM><FONT face="Times New Roman">F</FONT></EM>是<EM>ρ</EM>,<EM><FONT face="Times New Roman">A</FONT></EM>,<EM>γ</EM>,<EM>α</EM><FONT face="Times New Roman"><SUB>n</SUB></FONT>的函数。满足一定约束条件,结合蜗杆副的实际要求,对(<FONT face="Times New Roman">11</FONT>)式进行优化处理,即<EM><FONT face="Times New Roman">F</FONT></EM>→<FONT face="Times New Roman">min</FONT>,便能求出齿廓参数与加工安装参数。</P><P align=left><STRONG>  <FONT face="Times New Roman">6</FONT>.测量实例</STRONG></P><P align=left>  在<FONT face="Times New Roman">HCM320</FONT>柱坐标测量机上应用上述原理和方法测量<FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆的齿廓。被测蜗杆的法截面如图<FONT face="Times New Roman">5</FONT>所示,其参数为:<EM><FONT face="Times New Roman">m</FONT></EM>=<FONT face="Times New Roman">5</FONT>.<FONT face="Times New Roman">2mm</FONT>,<EM>α</EM><FONT face="Times New Roman"><SUB>n</SUB></FONT>=<FONT face="Times New Roman">23°</FONT>,<EM>γ</EM>=<FONT face="Times New Roman">10°47</FONT>′<FONT face="Times New Roman">03</FONT>″,<EM><FONT face="Times New Roman">Z</FONT></EM>=<FONT face="Times New Roman">2</FONT>。应用<FONT face="Times New Roman">Monte</FONT> <FONT face="Times New Roman">Carlo</FONT>法对(<FONT face="Times New Roman">3</FONT>)式求解,即可方便地得到该蜗杆的理论齿廓。图<FONT face="Times New Roman">6</FONT>所示为求出的右齿面的轴向齿廓(比例<FONT face="Times New Roman">1</FONT>∶<FONT face="Times New Roman">10</FONT>);图<FONT face="Times New Roman">7</FONT>所示为实测结果,其中在<FONT face="Times New Roman">X</FONT>方向的采样间距为<FONT face="Times New Roman">0.05mm</FONT>。为了以更大比例(<FONT face="Times New Roman">1</FONT>∶<FONT face="Times New Roman">100</FONT>)绘出理论齿廓和实测齿廓,以便能看出两者间的差别,图<FONT face="Times New Roman">7a</FONT>是对理论齿廓和实际齿廓进行坐标变换后的结果;如图<FONT face="Times New Roman">7b</FONT>是齿形误差曲线(<FONT face="Times New Roman">1</FONT>∶<FONT face="Times New Roman">500</FONT>)与测量结果。如对该蜗杆的同一齿廓测量<FONT face="Times New Roman">5</FONT>次,其重复性为<FONT face="Times New Roman">0.8</FONT>μ<FONT face="Times New Roman">m</FONT>。测量齿廓时,起测点与蜗杆轴线间实际距离的确定是保证测量精度的关键因素,为此,测量时应校准仪器的零位。</P><P align=center><STRONG><IMG src="http://www.chmcw.com/upload_files/article/20/1_noetam2008313111159.gif"></STRONG></P><P align=center><STRONG>图<FONT face="Times New Roman">5</FONT> 蜗杆法截面</STRONG></P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_avvsk52008313111213.gif"></P><P align=center><STRONG>图<FONT face="Times New Roman">6</FONT> 轴向理论齿廓</STRONG></P><P align=center><IMG src="http://www.chmcw.com/upload_files/article/20/1_qzlc0i2008313111233.gif"></P><P><TABLE cellSpacing=0 cellPadding=0 width="90%" border=0><TBODY><TR><TD width="50%"><P align=center><STRONG><FONT size=2>图<FONT face="Times New Roman">7</FONT> 齿廓曲线与齿形误差</FONT></STRONG></P></TD></TR></TBODY></TABLE></P><P align=left><STRONG>  <FONT face="Times New Roman">7</FONT>.结束语</STRONG></P><P align=left>  本文所述测量<FONT face="Times New Roman"><EM>ZC</EM><SUB>1</SUB></FONT>蜗杆齿廓的方法具有速度快、精度高等特点。本方法也适用于<EM><FONT face="Times New Roman">ZK</FONT></EM>蜗杆等其它曲纹面蜗杆的齿廓测量,只是理论齿廓不同。</P>
页: [1]
查看完整版本: 圆弧圆柱蜗杆的齿廓测量与参数反求

中国磨床技术论坛
论 坛 声 明 郑重声明:本论坛属技术交流,非盈利性论坛。本论坛言论纯属发表者个人意见,与“中国磨削技术论坛”立场无关。 涉及政治言论一律删除,请所有会员注意.论坛资源由会员从网上收集整理所得,版权属于原作者. 论坛所有资源是进行学习和科研测试之用,请在下载后24小时删除, 本站出于学习和科研的目的进行交流和讨论,如有侵犯原作者的版权, 请来信告知,我们将立即做出整改,并给予相应的答复,谢谢合作!

中国磨削网